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Here’s briefly what we’ll be discussing today:
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Symmetry Groups

The Formal Concept of a Continuous Group
Topological Spaces and Continuity
Definition of Continuous Group
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Symmetries in Geometry
Isometries and Symmetries

Geometry is concerned with figures and isometries.

A figure F is a
subset of Rn.

An isometry is a function ϕ : Rn → Rn that is:
1 one-to-one and onto,
2 is continuous and has a continuous inverse, and
3 preserves distance between points.

A symmetry ψ of a figure F is an isometry that leaves F invariant,
meaning that ψ(F) = F .
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Symmetries in Geometry
Symmetry Groups

For any figure F , the set of symmetries of F forms a group.

This is because:
1 the identity function ι : Rn → Rn is

a symmetry of F ,
2 if ϕ and ψ are symmetries of F ,

then so is ϕ ◦ ψ, and
3 if ϕ is a symmetry of F , then so is
ϕ−1.

We’ll call this group Sym(F).
We will also consider subgroups of
Sym(F).
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Symmetries in Geometry
Figures with Discrete Symmetry Groups

F

Sym(F) = C3

G

Sym(G) = Z× {−1, 1}

An important subgroup of
Sym(G) is Z.

H

Sym(H) = Z× Z
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Symmetries in Geometry
Figures with Continuous Symmetry Groups

S1 = {
( cos θ − sin θ

sin θ cos θ

)
: θ ∈ R}, planar rotations about the origin.

F G H

Sym(F) = S1 ∪ {reflections that fix the origin}

Sym(G) = SO(3) = {M ∈ R3×3 : MTM = id3×3}.

Sym(H) is today’s challenge question.
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Symmetries in Geometry
Two Representations of S1

Matrix Representation: S1 = {
( cos θ − sin θ

sin θ cos θ

)
: θ ∈ R}.

The group operation ∗ is matrix multiplication.(
cos θ1 − sin θ1
sin θ1 cos θ1

)
∗
(

cos θ2 − sin θ2
sin θ2 cos θ2

)
=

(
cos(θ1+θ2) − sin(θ1+θ2)
sin(θ1+θ2) cos(θ1+θ2)

)
Unit Circle Representation (R modulo 2π):
S1 = {[x ] : x ∈ R, [x1] = [x2] if and only if x1 ≡ x2 (mod 2π)}

The group operation ∗ is addition of
equivalence classes via reduction modulo 2π.

[x1] ∗ [x2] = [x1 + x2]
g : R→ S1 by g(x) = x mod 2π
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The Formal Concept of a Continuous Group
Topological Spaces and Continuity

In order to make continuity abstract, we need the notion of a
topological space, which makes precise the idea of closeness.

Definition
A Topological Space is a set X
together with a notion of open
subsets of X satisfying:

1 ∅ and X are open sets,
2 the intersection of finitely

many open sets is open, and
3 the union of arbitrarily many

open sets is open.

A function f : X → Y is
continuous means that whenever
U ⊂ Y is open, so is f −1(U).

Two topological spaces X and Y
are called homeomorphic when
there is a function between them
that is one-to-one, onto,
continuous, and whose inverse is
also continuous.
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The Formal Concept of a Continuous Group
Definition of Continuous Group

A continuous group is a set G that is a group and a topological
space where the group structure and the topology are interrelated.

Definition
A continuous group is a group G which is also a topological space
such that the functions

G × G → G by (x , y) 7−→ xy , and
G → G by x 7−→ x−1

are continuous with respect to the topology of G .

In other words, group multiplication and group inversion are
continuous function in the topology sense.
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One-Parameter Groups
Cyclic Groups

Recall the discrete symmetry groups Cn and Z. These groups can
be built up from repeated application of a single isometry and its
inverse, so we call them cyclic groups.

Cyclic groups are necessarily discrete. We need to be able to come
up with a continuous analog. We’ll need the following definition.

Definition
A group homomorphism is a function between groups f : G1 → G2
satisfying the property f (x ∗ y) = f (x) ∗ f (y) for all x , y ∈ G1.

A cyclic group can be thought of as a pair (C , f ) where C is a
group and f an onto group homomorphism f : Z→ C .
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One-Parameter Groups
Definition of One-Parameter Group

One-parameter groups play the
role of cyclic groups in the
continuous setting.

Definition
A one-parameter group is a pair
(G , f ) where G is a non-trivial
continuous group and f : R→ G

1 is continuous,
2 maps open sets to open sets,
3 is onto, and
4 is a homomorphism.

In a sense, we can think of t ∈ R
as the time parameter of a path
that traces out our group G ,
visiting each point of G at least
once.
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One-Parameter Groups
Classification of One-Parameter Groups

The following theorem allows us to classify all possible
one-parameter groups.

Theorem
If (G , f ) is a one-parameter group, then G is isomorphic (and
homeomorphic) to either R or S1.

So there are only two essentially different one-parameter groups.
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One-Parameter Groups
Classification of One-Parameter Groups

Proof
f : R→ C . If f is an isomorphism, we’re done.

If f is not an isomorphism, we will see that C is isomorphic to S1.
We proceed in steps:

There is a positive t ∈ R such that f (t) = idG .
There is a smallest positive t ∈ R such that f (t) = idG , say s.
For any n ∈ Z, for any t ∈ [0, 2π), f (ns + t) = f (t), and
f (ns + t) = idG if and only if t = 0.

So far, this shows that:
f −1(idG ) = {. . . ,−2s,−s, 0, s, 2s, . . . }
f can be though of as the function
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One-Parameter Groups
Classification of One-Parameter Groups

Proof (continued)

Let g : R→ S1 be the function g(t) = t mod 2π.

Let g ′ : S1 → R be the function that takes an equivalence
class [x ] and returns the smallest positive representative of [x ].
Let T : R→ R be the linear transformation T (x) = s

2πx .
Finally, define h : S1 → C to be the function h = f ◦ T ◦ g ′.
In other words, h([x ]) = s

2πg
′([x ]) mod s.

h is a group homomorphism.
h is onto and one-to-one.
h and h−1 are continuous.
Therefore, h is an isomorphism of groups and a
homeomorphism of topological spaces. QED.
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Further Reading
Discrete Symmetry Groups

Coxeter, H.S.M. (1969). Introduction to Geometry, Second
Edition. Wiley Classics Library.
Hartshorne, R. (2000). Geometry: Euclid and Beyond.
Springer Undergraduate Texts in Mathematics.
Weyl, H. (1952). Symmetry. Princeton University Press.

Discrete symmetry groups have applications in chemistry, quantum
theory, and graphic design.
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Further Reading
Continuous Symmetry Groups

What we have called continuous groups are more often called
topological groups in the literature. The most important class of
topological groups is the class of Lie groups, which are not only
continuous, but differentiable.

Bourbaki, N. (1980). Lie Groups and Lie Algebras, Chapter
1-3. Springer-Verlang.
Munkres, J.R. (2000). Topology, Second Edition. Prentice
Hall.
Stillwell, J. (2008). Naive Lie Theory. Springer Undergraduate
Texts in Mathematics.

Topological groups have applications in relativity, string theory, and
computer graphics.
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